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A NEW APPROACH TO DESIGN OF CROSS-LINKED SECOND-ORDER
NONLINEAR OPTICAL POLYMERS

BRAJA K. MANDAL, JUN Y. LEE, XIAO F. ZHU, YONG M. CHEN, EKACHAI
PRAKEENAVINCHA, JAYANT KUMAR and SUKANT K. TRIPATHY*
Departments of Chemistry and Physics, University of Lowell, One
University Avenue, Lowell 01854, Massachusetts (USA)

I
ABSTRACT

A new class of cross-linked second-order nonlinear optical (NLO)
polymers has been developed by processing a NLO-dye and a polymer
similar to conventional 'doped polymer' system. Intermolecular cross-
linking was carried out by UV radiation subsequent to electric field
induced poling of the composite. Cinnamate (C6H 5-CH.CH-CO 2-) and
styrylacrylate (C6H 5-CHCH-CH.CH-CO 2-) moieties are selected as the
photoreactive chromophores which are attached to both the NLO molecules
at two positions and randomly substituted to a vinyl polymer. The poled
cross-linked polymers exhibit stable nonlinear activity over a long period
of time as characterized by temporal response of second-harmonic
generation signal and UV absorption characteristics.

INTRODUCTION

Second-order nonlinear optical (NLO) polymers exhiboit excellent

retention of nonlinear activity over time when a certain degree of cross-
linking is introduced into the polymer. Cross-links between the polymer
chains restrict the molecular motion of the segments and hence prevent
the deorientation of the ordered NLO molecules. This approach was first
reported by Eich et al [1] in an 'epoxy' system in which the NLO moieties
are incorporated either in the multifunctional epoxy or amine components
or in both. First, a low molecular weight prepolymer is made to impart

9 adequate processability of the NLO components. Subsequently, long term



FIRST LII poling and thermally induced cross-linking are performed simultaneously
OF TEXT in order to obtain a three-dimensional NLO polymer. The problem of slow

relaxation of electric field induced aligned NLO moieties, which is an
AIRTUl I inherent property of NLO-dye doped polymers [2-4] and NLO-dye
TIrLT functionalized side chain polymers [5-7], is eliminated. A high degree of

loading of NLO molecules is also possible without the problem of phase
segregation. In addition, the cross-linked system is expected to possess

!V, P ,1 enhanced thermal stability due to its net-work structure.

A;,,. Recently, we have reported an alternative approach to obtain a cross-

linked second order NLO polymers [8]. The principle is based on the 2+2
photodimerization reactions between the photoreactive carbon-carbon
double bonds which are substituted in both the NLO-dye and the polymer.
In this paper, we describe some of the physical characteristics of the
photocross-linkable systems derived from a cinnamate functionalized
NLO-dye and the photoreactive polymers, polyvinylcinnamate (PVCN) and

AI3STRlAt polyvinylstyrylacrylate (PVSA).

EXPERIMENTAL

Materials

The structures of the NLO-dye and the polymers used in the present
work are shown in Fig. 1. The synthesis of azo dye, 3-cinnamoyloxy-4-[4-
(N,N-diethylamino)-2-cinnamoyloxy phenylazo] nitrobenzene (CNNB-R), has
been reported elsewhere [8]. Commercially available PVCN (Polysciences)
was used as received. The synthesis of PVSA was performed according to
the procedure described by Tanaka et al 19).

NO2

0 0 hO N ,,

~N5

PhPh 
N

PVCN PVSA CNNB-R

Fig. 1. Structures of the photoreactive polymers (PVCN and PVSA) and the
NLO-dye (CNNB-R).



.f if X Processing

Homogeneous solutions of the polymer and the dye were prepared either
^IIII( in toluene/dichlorobenzene (1:3; v/v) mixture (for PVCN) or in DMF (for
T'IT! ,

PVSA) using an ultrasonic mixer at 25 to 350C. The solution was then
filtered through 0.5 lam teflon filter to remove undissolved particles and
spun over substrates such as glass, quartz and indium-tin-oxide (ITO)

A'.! IIt coated glass at 2000 to 4000 rpm depending on the desired film thickness.

A',T . The samples were then baked in a vacuum oven at 600 C for at least 12 h
At prior to physical measurements.

All films in the present investigation were poled by corona poling
technique using wire-to-plane geometry [4]. The poling temperature was
chosen close to 700C, about 10 to 150C below the glass transition
temperature (Tg) of the composite. Mercury lamps with the spectral peak

at 254 nm and 366 nm were used as the source of UV radiation in order to
AF. cross-link the PVCN and PVSA matrices respectively. The intensity of

incident radiation on the film surface was approximately 2 mW/cm 2 at

wavelength 254 nm and 13 mW/cm2 at wavelength 366 nm. The exposure
time for desired cross-linking was established from the UV-Vis spectra
of the doped polymer films.

For the measurement of electro-optic coefficient the poled and cross-
linked film over ITO coated substrate was further spin coated with a thin
film of polyvinylalcohol (PVA) prior to the deposition of gold electrode
(about 46 nm) by thermal evaporation. The coating of PVA was found
useful in order to avoid shorts which may occur due to the pinholes
generated during the corona poling process.

Instrumentation

Absorption characteristics of the polymer films coated over quartz or
glass plates were investigated with a Perkin Elmer Lambda-9 UV-VIS

spectrophotometer. The index of refraction was determined either by
using an Ellipsometer (Rudoph Research) or by waveguiding experiment
[10]. Calorimetry studies were performed with a DuPont 2000 differential
scanning calorimeter (DSC). A Nd:YAG laser (Quantel) was used as the
fundamental light source (1.063 I.m) for second-harmonic generation (SHG)
experiment. Electro-optic measurements were carried out using a He-Ne
laser at wavelength 0.633 Iam.



OF TExi RESULTS AND DISCUSSION

Linear and nonlinear optical properties of PVCN films doped with
A1 CNNB-R are reported in our earlier communication [11]. Stable NLO

activity was observed in the case of the photo-crosslinked polymer.

DSC studies have been performed to investigate the photocross-linking
behavior of the dye-doped PVCN. The Tg of the undoped PVCN is observed
close to 880C. Doping of 10% CNNB-R by weight decreases the Tg to 840 C
due to the plasticizing effect. However, no significant change in Tg of the
doped polymer films was observed with the increase of radiation dosage
(at 254 nm). The polymer, PVCN, has a high molecular weight to begin
with (Mw - 170,000) and further increase in molecular weight due to
cross-linking does not effect the Tg (Fig. 2a). On the other hand, as the
polymer gets increasingly cross-linked the segmental motion is hindered

'"' :" leading to a complete loss of Tg at high level of cross-linking. In such a

situation the degree of photocross-linking reaction can be best studied by
calculating the changes in specific heat capacities at Tg, (ACp)Tg, going

from the glassy to the rubbery phases [12]. Fig. 2b shows the (AdCp)r

decreases with the increase of radiation dosage upto zero where the
matrix forms an intractable net-work.

&0
(a) (b)" 8

N 6,

v 4.

v Ii 2'
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Fig. 2. (a) DSC curves of PVCN films doped with 10% CNNB-R. Cross-
linking was performed by UV radiation at wavelength 254 nm; I = 0, I - 1,
[if -. 3, IV . 5, v - 10, V1 = 30 min respectively. (b) Decrease of specific

heat capacity at Tg of PVCN film doped with 10% CNNB-R with UV
radiation at wavelength 254 nm.



(' LA The electro-optic coefficient, r3 3 , of the poled PVCN film doped with
10% CNNB-R by weight was measured by the method described by Teng and
Man [13]. A schematic of the experimental arrangement is shown in Fig. 3.

Anrifci The phase retardation between the p and s waves modulated at about 5 kHz
T11 I I- causes modulation of the measured intensity amplitude !m .  A Soleil-

Babinet compensator was used to bias the DC intensity at the half-
maximum intensity Ic . r3 3 was obtained from the following equation:

33= Im (n2 - sinO)3

r33 4 Vm Ic (n2-2sin2 0) n2sin 2 o

where X is the wavelength, Vm is the modulating voltage, and n is the
refractive index of the doped polymer. The value of r3 3 was obtained as 9

pm/V using He-Ne incident light at wavelength 0.633 gm. Very small
amount of absorption of the doped polymer film at 0.633 p±m was ignored

A f';T PA in this calculation. These calculations also assumed r3 3 to be equal to

three times r 13 .

Incident light

Glass

ITO

Polymer :i*,. . . .

Fig. 3. Experimental set-up for the measurement of electro-optic

coefficient, r3 3 .

present work. The Xmax of PVSA appears at a longer wavelength due to the

presence of an additional double bond in the structure (Fig. 1). Typically,
PVCN and PVSA films are effectively cross-linked at 254 and 366 nm
respectively, although their absorption maxima occur at 270 and 300 nm



respectively. In general, the photoreactivity of both the matrices is

decreased when doped with the dye molecules. Figs. 4a and 4b describe

the photoreactivity of doped and undoped polymer films in terms of the

decrease in the absorption at the maximum characterizing the absorptio ,

by the photoreactive chromophores.

1.0. 1.0
a)(a) (b)

,O 0.5 oil0.C

Cu Z

0.0 0.0
0 20 40 60 0 20 40 60

UV radiation (min) UV radiation (min)

Fig. 4. Photoreactivity of the unpoled PVCN and PVSA films with the

radiation dosage. (a) Absorption measured at 270 nm; I, PVCN; II, PVCN +

CNNB-R (10%); III, PVCN + CNNB-R (20%). (b) Absorption measured at 300

nm; I, PVSA; II, PVSA + CNNB-R (10%).

The decrease in absorption with exposure time indicates the loss of the

a ,-unsaturated double bonds which are converted into a saturated four

membered ring as a result of intermolecular cross-linking.

0 0

Ar , v 0, =

A 0 A 0
0

Ar
-Ph I -CH-CH-Ph

The temporal stability of the orientational order of the NLO dyes can be

monitored by UV absorption characteristics of the film with time. When a

doped polymer film is subjected to poling the dipolar NLO molecules are



O TI- ordered along the poling field. This causes a decrease in the absorption of
the film for incident radiation polarized in the plane of the film. The

second order properties are directly proportional to the orientational
.A P " order of the NLO molecules in the matrix.
IT

The stability of the poled cross-linked dye-doped PVSA system

compared to a poled uncross-linked system is presented in Figs. 5a and 5b.

The absorption spectrum of an unpoled uncross-linked PVSA-dye-doped

film is shown in trace A of Fig. 5a, characterizing the absorption by the

NLO dye. Subsequent to poling as shown in trace I there is substantial

reduction in the absorption indicative of the alignment of the dye
molecules. The absorption spectrum of the poled uncross-linked system

continues to change with time slowly shifting towards the spectrum of

the unpoled film (traces It to v). In Fig, 5b trace A again refers to an

unpoled uncross-linked film ard trace I is the absorption spectrum of a

poled and cross-linked film. There is, however, little or no shift in the

poled cross-linked spectrum as a fu,.;ction of time (traces II to V). The

order induced upon poling has been vitrified by the extensive cross-linking

in the system.
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Fig. 5. Temporal stability of PVSA films doped with 10% CNNB-R with

respect to the change in absorption of the NLO dye. Traces A in both (a)

and (b) represent the absorption characteristics of unpoled and uncross-

linked films. (a) Poled and uncross-linked films; I, 0 h; II, 1 h; III, 3 h; Iv,
7 h; V, 22 h. (b) Poled and cross-linked films; 1, 0 h; it, 1 h;l11, 3 h:IV, 7
h; v, 22 h.
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